Friday, November 30, 2018

MATU: Sebahagian daripada 17,000

MATU: Sebahagian daripada 17,000 penduduk di Daerah Matu kini berdepan dengan masalah tekanan air yang rendah. Lebih perit lagi ada ketikanya air yang keluar dari saluran paip ke rumah penduduk kotor seperti air sungai selepas hujan.

Ekoran daripada keadaan tersebut penduduk di daerah berkenaan kini begitu sukar untuk mendapat bekalan air bersih yang untuk kegunaan seharian lebih-lebih lagi dalam ketika penduduk menjalani ibadah puasa di bulan Ramadan sekarang.

Masalah tekanan rendah dan kualiti air yang teruk bukan perkara baharu bagi penduduk namun keadaan tersebut kini kian meruncing apabila ia berlaku ketika penduduk menjalani ibadah puasa dan secara kebetulan juga kini musim cuti sekolah yang menyaksikan ramai penduduk yang balik bercuti di kampung menyebabkan penggunaan bertambah dari biasa.

Lebih menyedihkan lagi, penduduk di Kampung Tian dalam daerah yang sama kini berdepan masalah air kotor dan dan tidak dapat diminum.

Akibatnya, penduduk terpaksa mengeluarkan perbelanjaan lebih untuk membeli air minuman botol (air mineral) sebagai kegunaan memasak dan untuk berbuka puasa.

Mengutip luahan nitizen yang terjejas akibat masalah itu, kebanyakan mereka berang dengan keadaan yang berlaku kini. Dan tiadanya tindakan segera oleh pihak berkenaan bagi memulihkan keadaan tersebut membuatkan penduduk mula hilang sabar dan menjadikan laman media sosial sebagai medan melepas apa yang terbuku di hati kepada pihak yang berkenaan.

Seorang penduduk, Noralizza Arshad berkata, penduduk kini amat bimbang jika masalah air yang dialami berlarutan sehingga menjelang Syawal.

“Hari Raya ramai yang akan pulang berhari raya di kampung.Sekali gus akan menyebabkan peningkatan penggunaan air. Jika tiada langkah segera diambil sambutan Hari Raya tahun ini akan terencat dan tidak semeriah sebelum ini.

“Saya mewakili penduduk di sini merayu kepada pihak berkenaan agar dapat bertindak segera untuk menyelesaikan masalah air yang dihadapi kami sini. Jika tiada cara lain tolonglah hantar air bersih untuk kami dengan apa cara sekalipun dengan lorikah, dengan kapalkah. Yang penting penduduk ada sumber untuk dapat air bersih,” ujarnya.

Menurut seorang penduduk yang hanya mahu dikenali sebagai Rohani Shatu, seluruh penduduk Daerah Matu menerima bekalan air dari loji perawatan air yang terletak di hulu Kampung Tian.

“Matu terdiri daripada beberapa kampung. Tiga kampung memiliki penduduk tertinggi iaitu Kampung Sekaan, Bawang, dan Tian. Tidak terkecuali Kuala Matu.

“Penduduk ramai, jadi loji sudah tidak mampu memenuhi permintaan penduduk yang kian bertambah. Usaha memperbesar saluran paip induk bawah tanah perlu dilakukan dengan kadar segera. Sejak loji air dibina saluran paip utama belum pernah dinaik taraf atau ditukar. Ini menjadi antara sebab yang menyumbang kepada masalah tekanan air rendah dan kotor.

“Rancangan Transformasi Luar Bandar (RTP) telah lama diperkenalkan. Jadi harapan kami bawalah RTP ke daerah bermasalah ini bagi menjana perubahan dan pembawa arus pembangunan untuk kami di sini. Air adalah keperluan asas yang tidak boleh dipandang enteng selain pembangunan prasarana seperti jalan raya dan juga elektrik,” ujarnya.

Tambah Rohani lagi, ketiadaan air bersih menambah bebanan penduduk. Penduduk perlu membeli air minuman dalam botol. Air berkenaan berharga dari RM 9 hingga RM12 (sekotak, 12 botol, 1.5 liter).

“Terpaksa membeli air satu lagi beban yang perlu ditanggung penduduk yang kurang mampu dan juga bagi golongan warga emas,” jelasnya.

Harapan penduduk kini, masalah yang sedang melanda Daerah Matu akan mendapat perhatian sewajarnya daripada pihak berwajib dalam masa terdekat.

Thursday, November 29, 2018

Water is an extremely complex liquid. The way in which separate water molecules accumulate on various materials has a crucial impact on a great many processes, including corrosion and weathering, and is key in ensuring that catalysts function optimally. A team based at TU Wien has now managed to uncover the mystery behind the structure of water molecules on iron oxide surfaces, and their work has revealed that water molecules can form of complex structures reminiscent of bridges, which play a significant role when it comes to chemical reactions on the surface.

The special properties of water

"What makes water molecules unique is that they can form hydrogen bridge bonds," explains Prof. Gareth Parkinson from the Institute of Applied Physics at TU Wien. "The electrical charge distribution is not even. The oxygen atom is slightly negatively charged, whilst the hydrogen atoms are slightly positively charged." As a result, bonds can form between water molecules -- the famous hydrogen bridge bonds -- or even between a water molecule and other types of molecule.

The repercussions of this are wide-ranging. For example, hydrogen bridge bonds are the reason that water needs to reach the high temperature of 100°C before it boils. They are also a key factor in the structure of proteins.

These bonds even come into play time and time again for completely unscientific assertions, as people claim they allow for mysterious 'information' to be stored in water. This is physically impossible because hydrogen bridge bonds are not very strong at all and are broken down again in a split second in liquid water. Nevertheless, you can see very different results when water molecules accumulate on surfaces, where incredibly complex, stable structures form at low temperatures.

The realms of possibility

"There had already been indirect indications of this type of structure forming," says Ulrike Diebold (TU Wien). "But in order to really make the structure of water visible on iron oxide surfaces, we had to optimise the very best state-of-the-art measurement techniques further and really push the boundaries of what is possible."

To start with, a jet of water molecules is blasted onto the surface in a vacuum at a low temperature. The surface is then gently heated up to a temperature of around -30°C, causing the water structures to gradually be broken up. The water molecules detach from the surface one by one and are collected by a detector. "We can measure exactly how many water molecules leave the surface at a particular temperature. We can then take this information to work out the bond energy, which in turn allows us to identify the type of molecule structures we are dealing with," explained Gareth Parkinson.

At the same time, a special vibration-proof, high-performance microscope was used to produce high-resolution images of the surface, so that the water structures could actually be seen. In addition to this, sophisticated computer simulations were developed as a way of explaining the geometrical positioning of the water molecules at the quantum level. "Finally we have three tools at our disposal that allow us to study the water structures, and that's what's needed if you want to get reliable results," says Gareth Parkinson. "All three analyses match up perfectly, leaving us to conclude with great confidence that we now understand the formation of water structures on iron oxide surfaces."

The evidence shows that several structures are formed: it is rare that a single water molecule sits on the surface alone, with water molecules instead tending to gather in pairs or groups of three. Then you have more complex structures consisting of six or eight molecules, which span the surface of the iron oxide like elliptically curved bridges.

"Our primary objective was to develop the analytical methods to the point that we could obtain irrefutable proof of these molecular structures. And that's what we did," says Ulrike Diebold. "The method that we used here for iron oxide can also be applied to other materials."

Tuesday, November 27, 2018

Water is an extremely complex liquid. The way in which separate water molecules accumulate on various materials has a crucial impact on a great many processes, including corrosion and weathering, and is key in ensuring that catalysts function optimally. A team based at TU Wien has now managed to uncover the mystery behind the structure of water molecules on iron oxide surfaces, and their work has revealed that water molecules can form of complex structures reminiscent of bridges, which play a significant role when it comes to chemical reactions on the surface.

The special properties of water

"What makes water molecules unique is that they can form hydrogen bridge bonds," explains Prof. Gareth Parkinson from the Institute of Applied Physics at TU Wien. "The electrical charge distribution is not even. The oxygen atom is slightly negatively charged, whilst the hydrogen atoms are slightly positively charged." As a result, bonds can form between water molecules -- the famous hydrogen bridge bonds -- or even between a water molecule and other types of molecule.

The repercussions of this are wide-ranging. For example, hydrogen bridge bonds are the reason that water needs to reach the high temperature of 100°C before it boils. They are also a key factor in the structure of proteins.

These bonds even come into play time and time again for completely unscientific assertions, as people claim they allow for mysterious 'information' to be stored in water. This is physically impossible because hydrogen bridge bonds are not very strong at all and are broken down again in a split second in liquid water. Nevertheless, you can see very different results when water molecules accumulate on surfaces, where incredibly complex, stable structures form at low temperatures.

The realms of possibility

"There had already been indirect indications of this type of structure forming," says Ulrike Diebold (TU Wien). "But in order to really make the structure of water visible on iron oxide surfaces, we had to optimise the very best state-of-the-art measurement techniques further and really push the boundaries of what is possible."

To start with, a jet of water molecules is blasted onto the surface in a vacuum at a low temperature. The surface is then gently heated up to a temperature of around -30°C, causing the water structures to gradually be broken up. The water molecules detach from the surface one by one and are collected by a detector. "We can measure exactly how many water molecules leave the surface at a particular temperature. We can then take this information to work out the bond energy, which in turn allows us to identify the type of molecule structures we are dealing with," explained Gareth Parkinson.

At the same time, a special vibration-proof, high-performance microscope was used to produce high-resolution images of the surface, so that the water structures could actually be seen. In addition to this, sophisticated computer simulations were developed as a way of explaining the geometrical positioning of the water molecules at the quantum level. "Finally we have three tools at our disposal that allow us to study the water structures, and that's what's needed if you want to get reliable results," says Gareth Parkinson. "All three analyses match up perfectly, leaving us to conclude with great confidence that we now understand the formation of water structures on iron oxide surfaces."

The evidence shows that several structures are formed: it is rare that a single water molecule sits on the surface alone, with water molecules instead tending to gather in pairs or groups of three. Then you have more complex structures consisting of six or eight molecules, which span the surface of the iron oxide like elliptically curved bridges.

"Our primary objective was to develop the analytical methods to the point that we could obtain irrefutable proof of these molecular structures. And that's what we did," says Ulrike Diebold. "The method that we used here for iron oxide can also be applied to other materials."

Monday, November 26, 2018

Sydney's iconic harbour has played a starring role in the development of new CSIRO technology that could save lives around the world.

Using their own specially designed form of graphene, 'Graphair', CSIRO scientists have supercharged water purification, making it simpler, more effective and quicker.

The new filtering technique is so effective, water samples from Sydney Harbour were safe to drink after passing through the filter.

The breakthrough research was published today in Nature Communications.

"Almost a third of the world's population, some 2.1 billion people, don't have clean and safe drinking water," the paper's lead author, CSIRO scientist Dr Dong Han Seo said.

"As a result, millions -- mostly children -- die from diseases associated with inadequate water supply, sanitation and hygiene every year.

"In Graphair we've found a perfect filter for water purification. It can replace the complex, time consuming and multi-stage processes currently needed with a single step."

While graphene is the world's strongest material and can be just a single carbon atom thin, it is usually water repellent.

Using their Graphair process, CSIRO researchers were able to create a film with microscopic nano-channels that let water pass through, but stop pollutants.

As an added advantage Graphair is simpler, cheaper, faster and more environmentally friendly than graphene to make.

It consists of renewable soybean oil, more commonly found in vegetable oil.

Looking for a challenge, Dr Seo and his colleagues took water samples from Sydney Harbour and ran it through a commercially available water filter, coated with Graphair.

Researchers from QUT, the University of Sydney, UTS, and Victoria University then tested and analysed its water purification qualities.

The breakthrough potentially solves one of the great problems with current water filtering methods: fouling.

Over time chemical and oil based pollutants coat and impede water filters, meaning contaminants have to be removed before filtering can begin. Tests showed Graphair continued to work even when coated with pollutants.

Without Graphair, the membrane's filtration rate halved in 72 hours.

When the Graphair was added, the membrane filtered even more contaminants (99 per cent removal) faster.

"This technology can create clean drinking water, regardless of how dirty it is, in a single step," Dr Seo said.

"All that's needed is heat, our graphene, a membrane filter and a small water pump. We're hoping to commence field trials in a developing world community next year."

CSIRO is looking for industry partners to scale up the technology so it can be used to filter a home or even town's water supply.

It's also investigating other applications such as the treatment of seawater and industrial effluents.

Saturday, November 24, 2018

Menggunakan model yang dibangunkan di JRC, saintis telah berjaya menyimulasikan arus jangka panjang Laut Hitam, kandungan air masin dan suhu untuk kali pertama.

Suhu rata-rata permukaan Laut Hitam mungkin tidak meningkat, menurut hasil mengejutkan kajian baru dari JRC.

Kajian ini menggunakan model untuk mensimulasikan perubahan suhu yang mungkin dan meramalkan trend jangka panjang dalam hidrodinamika Laut Hitam.

Walaupun permukaan menunjukkan tiada trend pemanasan jangka panjang, simulasi yang sama juga menunjukkan bahawa suhu purata di 50 meter di bawah permukaan mungkin meningkat.

Laut Hitam mempunyai keadaan semula jadi yang unik seperti keseimbangan air bersih bersih dan arus tempatan yang sangat spesifik. Data pemantauan mengenai perubahan suhu berubah-ubah dan terhad. Oleh itu, tidak jelas apakah kesan perubahan iklim pada suhu air Laut Hitam.

Laut telah mengalami kemerosotan ekologi yang ketara sejak tahun 1970-an, disebabkan terutamanya oleh pencemaran, penangkapan ikan yang berlebihan dan perubahan iklim semulajadi. Trend pemetaan dalam ekosistemnya dan mensimulasikan senario masa depan adalah penting untuk memahami bagaimana sifat-sifat Laut dapat berkembang pada masa depan akibat perubahan iklim dan keputusan dasar.

Penemuan utama

Simulasi dalam kajian ini, yang meliputi lima dekad, tidak menunjukkan trend jangka panjang yang signifikan dalam suhu air permukaan rata-rata Laut Hitam. Kekurangan trend ini merupakan hasil yang sepenuhnya baru berdasarkan simulasi jangka panjang yang sebelum ini tidak berjaya dilaksanakan.

Simulasi dijalankan untuk tempoh penuh dari tahun 1960 - 2015 dan hasilnya diperiksa terhadap data yang diketahui, baik dari maklumat satelit yang tersedia dalam tempoh dua puluh tahun yang lalu dan kurang lengkap data dari dekad yang terdahulu.

Sebelum menyiapkan kajian ini, saintis telah bergantung kepada data suhu permukaan yang jarang dari pelayaran kapal untuk memahami sifat-sifat Laut pada dekad-dekad yang terdahulu.

Walau bagaimanapun, beberapa titik data yang wujud untuk tempoh ini belum cukup untuk membuktikan trend yang menentukan. Malah, dalam dekad antara 1966 dan 1975 terdapat hampir tiada data pemerhatian yang boleh didapati sama sekali.

Keputusan simulasi, semasa mengisi jurang, juga mengejutkan para saintis yang mengharapkan untuk melihat sekurang-kurangnya beberapa trend pemanasan antara tahun 1960 dan 2015. Hasilnya juga berbeza dengan simulasi sebelumnya Laut Mediterranean yang berdekatan, yang semakin hangat.

Para saintis juga terkejut mendapati aliran menurun yang signifikan dalam kandungan garam permukaan 0.02% setahun, sekali lagi berbeza dengan salinitas permukaan yang semakin meningkat yang terdapat di Mediterranean. Simulasi mendapati tiada korelasi individu antara garam dan kelajuan angin / arah, atau sesungguhnya dengan peningkatan input air tawar dari banyak sungai yang berlari ke Laut Hitam.

Ini menunjukkan bahawa kombinasi keadaan cuaca bertanggungjawab untuk trend ini.

Tambahan pula, kajian itu mengenal pasti tiga tempoh yang berbeza di mana terdapat peralihan yang ketara dalam air garam dan sifat-sifat suhu Laut Hitam - 1960-1970, 1970-1995 dan 1995-2015. Ini mungkin berkaitan dengan perubahan dalam arus laut, kerana tempoh tersebut juga dicirikan oleh perubahan ketara daripada peredaran semasa yang lemah dan terputus dalam tempoh pertama, kepada peredaran utama 'Rim Semasa' yang utama dalam tempoh kedua dan ketiga.

Sepanjang tempoh simulasi penuh, pengukuhan peredaran ini dapat dilihat, disertai oleh pembentukan eddies kecil yang dilembagakan ke arah aliran semasa.

Gambar yang lebih besar

Bumi semakin hangat, tetapi ini tidak berlaku seragam di seluruh planet ini dan sesetengah kawasan lebih panas daripada yang lain. Oleh itu, sementara Laut Hitam mungkin tidak terjejas dengan kuat, ini mungkin dikompensasi oleh kawasan lain yang memanaskan pada kadar yang lebih cepat daripada dunia secara keseluruhan.

Sebagai contoh, perairan permukaan laut berhampiran Texas apabila Hurricane Harvey mendera ke Houston adalah antara yang paling hangat di bumi.

Walaupun ia mungkin terdengar seperti berita baik bahawa tidak ada peningkatan jangka panjang dalam suhu air permukaan Laut Hitam, ini tidak bermakna ia tidak terjejas oleh pemanasan global. Kesan-kesan ini mungkin tersembunyi atau dikurangkan oleh fakta bahawa suhu udara di rantau ini adalah pemanasan.

Sesungguhnya, kajian ini juga meninjau tren suhu purata pada kedalaman spesifik dan mendapati trend positif pada 50 meter di bawah permukaan, yang menunjukkan pemanasan perairan yang lebih mendalam sebelum lapisan permukaan.

Latar Belakang

Beberapa keadaan semulajadi yang unik di Laut Hitam yang terkenal: apa yang dikenali sebagai 'Rim Current' yang beredar di perimeter Laut; Lapisan Perantaraan Dingin (CIL) perairan di bawah paras permukaan; dan paras air anoksik yang tinggi, yang membentuk lebih daripada 90% daripada jumlah air dalam lembapan.

Friday, November 23, 2018

Water is a basic necessity for all life. Every day humans, animals and plants use water as a source of drinking. Water is consumed directly by humans and animals. Plants absorb water to make food. Water covers 70% of the total area of the earth. However, the amount of fresh water is small. Most water can only be found in the sea and the vast ocean stretches.
Humans need water for life. Water is used for drinking, cooking, washing and cleaning. Without human water can live only 7 days according to the average temperature in Malaysia Water that reaches our home has gone through the following 3 main stages;
1 - water treatment at treatment plant
2 - storage in storage tank
3 - drainage through piping system

Thursday, November 22, 2018

Kajian yang dilakukan oleh para saintis di Universiti Exeter menggunakan percubaan berang-berang yang dikendalikan oleh Devon Wildlife Trust, telah menunjukkan kesan yang ketara terhadap haiwan untuk mengurangkan aliran tan tanah dan nutrien dari ladang yang berdekatan ke dalam sistem sungai tempatan .

Penyelidikan yang diketuai oleh profesor hidrologi Profesor Richard Brazier mendapati bahawa kerja keluarga tunggal berang telah menghilangkan sedimen, nitrogen dan fosforus yang tinggi dari air yang mengalir melalui kandang seluas 2.5 hektar.

Keluarga pemetik api, yang tinggal di lokasi berpagar di lokasi rahsia di West Devon sejak tahun 2011, telah membina 13 empangan, memperlambat aliran air dan mewujudkan satu siri kolam dalam sepanjang aliran yang kecil.

Penyelidik mengukur jumlah sedimen yang ditangguhkan, fosforus dan nitrogen dalam air yang mengalir ke tapak tersebut dan kemudian membandingkannya dengan air kerana ia kehabisan tapak yang telah melalui kolam dan empangan beaver. Mereka juga mengukur jumlah sedimen, fosforus dan nitrogen yang terperangkap oleh empangan di setiap kolam.

Keputusan mereka menunjukkan empangan telah terperangkap lebih daripada 100 tan metrik sedimen, 70% daripadanya adalah tanah, yang terkikis dari hulu 'padang rumput yang dikendalikan secara intensif' di hulu. Siasatan lanjut mendedahkan bahawa sedimen ini mengandungi kepekatan nitrogen dan fosforus yang tinggi, iaitu nutrien yang dikenali untuk menimbulkan masalah untuk hidupan liar di sungai dan sungai dan yang juga perlu dikeluarkan dari bekalan air manusia untuk memenuhi standard kualiti minum.

Penyelidikan ini dibiayai oleh Westland Countryside Stewards dan Majlis Penyelidikan Alam Semulajadi dan dijalankan oleh sebuah pasukan dari University of Exeter yang diketuai oleh Profesor Earth Surface Processes, Richard Brazier.

Profesor Brazier berkata: "Adalah menjadi perhatian serius bahawa kita melihat kadar kehilangan tanah yang tinggi dari tanah pertanian, yang lebih baik daripada kadar pembentukan tanah. Walau bagaimanapun, kami berasa sedih untuk mengetahui bahawa empangan beaver boleh pergi jauh untuk mengurangkan kehilangan tanah ini dan juga perangkap bahan pencemar yang membawa kepada kemusnahan badan air kita. Kerana peremajaan menjadi sesuatu yang biasa dalam landskap, kita pasti akan melihat kesan ini memberikan pelbagai faedah di seluruh ekosistem, seperti yang mereka lakukan di tempat lain di seluruh dunia. "

Penemuan penyelidikan mengenai kesan positif beruang di atas kehilangan hakisan tanah dan pencemaran dalam kursus air datang pada masa yang semakin membimbangkan isu-isu ini. Pada tahun 2009 kajian berasingan menganggarkan bahawa jumlah kos kehilangan tanah dari tanah pertanian UK adalah £ 45million, sebahagian besarnya disebabkan oleh kesan sedimen dan pencemaran nutrien hiliran.

Devon Wildlife Trust telah menjalankan percubaan berangin tertutup selama tujuh tahun, manakala sejak tahun 2015 ia juga telah menjalankan satu lagi projek berang-berang yang melibatkan populasi pemangsa liar di Sungai Otter, East Devon.

Pengarah Pemuliharaan dan Pembangunan amal, Peter Burgess berkata: "Perkongsian kami dengan Exeter University yang mengendalikan kedua-dua ujian pemangak kami yang berpagar dan dipijak itu mendedahkan maklumat yang menunjukkan memerang peranan penting dapat dimainkan, bukan sahaja untuk hidupan liar, tetapi kemampanan masa depan kami tanah dan air. Ia benar-benar memberi inspirasi untuk membuat pemerhatian kami disahkan oleh siasatan saintifik yang terperinci. "
Water is a basic necessity for all life. Every day humans, animals and plants use water as a source of drinking. Water is consumed directly by humans and animals. Plants absorb water to make food. Water covers 70% of the total area of the earth. However, the amount of fresh water is small. Most water can only be found in the sea and the vast ocean stretches.
Humans need water for life. Water is used for drinking, cooking, washing and cleaning. Without human water can live only 7 days according to the average temperature in Malaysia Water that reaches our home has gone through the following 3 main stages;
1 - water treatment at treatment plant
2 - storage in storage tank
3 - drainage through piping system

Wednesday, November 21, 2018

Kebanyakan sistem untuk memecah air ke dalam komponennya

Kebanyakan sistem untuk memecah air ke dalam komponennya - hidrogen dan oksigen - memerlukan dua pemangkin, satu untuk memacu tindak balas untuk memisahkan hidrogen dan satu lagi untuk menghasilkan oksigen. Pemangkin baru, diperbuat daripada besi dan phosphide dinickel pada busa nikel yang tersedia secara komersil, melakukan kedua-dua fungsi.

Penyelidik mengatakan ia berpotensi untuk menurunkan jumlah tenaga yang diperlukan untuk menghasilkan hidrogen dari air sambil menghasilkan ketumpatan semasa yang tinggi, ukuran pengeluaran hidrogen. Keperluan tenaga yang lebih rendah bermakna hidrogen boleh dihasilkan pada kos yang lebih rendah.

"Ia meletakkan kami lebih dekat kepada pengkomersialan," kata Zhifeng Ren, M.D. Anderson, Profesor Fizik di UH dan pengarang utama kertas yang menggambarkan pemangkin baru yang diterbitkan pada Jumaat di Nature Communications.

Hidrogen dianggap sebagai sumber tenaga yang wajar, dalam bentuk sel bahan bakar untuk kuasa motor listrik atau dibakar dalam enjin pembakaran dalaman, bersama dengan beberapa kegunaan industri. Kerana ia boleh dimampatkan atau ditukar kepada cecair, ia lebih mudah disimpan daripada beberapa bentuk tenaga lain, kata Ren, yang juga seorang penyelidik di Texas Superconductivity Centre di UH.

Tetapi mencari cara praktikal, murah dan mesra alam untuk menghasilkan sejumlah besar gas hidrogen - terutamanya dengan membelah air ke dalam bahagian komponennya - telah menjadi satu cabaran.

Kebanyakan hidrogen kini dihasilkan melalui pembetulan metana stim dan pengegasan arang batu; kaedah tersebut meningkatkan jejak karbon bahan bakar walaupun fakta itu membakar dengan bersih.

Dan sementara pemangkin tradisional boleh menghasilkan hidrogen dari air, pengarang bersama Shuo Chen, pembantu profesor fizik di UH, berkata mereka biasanya bergantung pada elemen kumpulan platinum yang mahal. Itu menimbulkan kos, menjadikan pembahagian air berskala besar tidak praktikal.

"Sebaliknya, bahan kami didasarkan pada unsur-unsur berlimpah bumi dan mempamerkan prestasi setanding dengan bahan kumpulan platinum," katanya. "Ia boleh dipertingkatkan dengan kos rendah, yang menjadikannya sangat menarik dan menjanjikan pengkomersialan pemecahan air."

Penyelidik berkata pemangkin itu kekal stabil dan berkesan melalui lebih daripada 40 jam ujian.

Pemangkin baru, mereka menulis, "terbukti menjadi pemangkin bifunctional yang luar biasa untuk pemisahan air keseluruhan, mempamerkan kedua-dua OER (reaksi evolusi oksigen) yang sangat tinggi dan aktiviti HER (reaksi hidrogen evolusi) dalam elektrolit alkali yang sama. rekod dalam elektrolisis air alkali (1.42 V untuk mendapatkan 10 mA cm-2), manakala pada ketumpatan arus praktikal secara komersil 500 mA cm-2. "

Pemangkin sebelumnya telah menggunakan bahan yang berbeza untuk merangsang reaksi untuk menghasilkan hidrogen daripada yang digunakan untuk menghasilkan oksigen. Ren berkata interaksi antara zarah besi fosfida dan zarah dinosil phosphide menaikkan kedua-dua reaksi. "Entah bagaimana usaha bersama kedua bahan ini lebih baik daripada bahan apa pun," katanya.



Selain Ren dan Chen, penulis lain di atas kertas termasuk Fang Yu, Haiqing Zhou dan Jingying Sun, semuanya dengan Jabatan Fizik UH; Fan Qin dan Jiming Bao, dengan Jabatan Kejuruteraan Elektrik dan Komputer di UH; dan Yufeng Huang dan William A. Goddard III dari Pusat Simulasi Bahan dan Proses di California Institute of Technology.

Tuesday, November 20, 2018

Water scarcity
Water scarcity is the lack of sufficient available water resources to meet the demands of water usage within a region.

It already affects every continent and around 2.8 billion people around the world at least one month out of every year.

More than 1.2 billion people lack access to clean drinking water.

Water scarcity involves water stress, water shortage or deficits, and water crisis.

While the concept of water stress is relatively new, it is the difficulty of obtaining sources of fresh water for use during a period of time and may result in further depletion and deterioration of available water resources.Water shortages may be caused by climate change, such as altered weather patterns including droughts or floods, increased pollution, and increased human demand and overuse of water.

A water crisis is a situation where the available potable, unpolluted water within a region is less than that region's demand.

Water scarcity is being driven by two converging phenomena: growing freshwater use and depletion of usable freshwater resources.

Water scarcity can be a result of two mechanisms: physical (absolute) water scarcity and economic water scarcity, where physical water scarcity is a result of inadequate natural water resources to supply a region's demand, and economic water scarcity is a result of poor management of the sufficient available water resources.

According to the United Nations Development Programme, the latter is found more often to be the cause of countries or regions experiencing water scarcity, as most countries or regions have enough water to meet household, industrial, agricultural, and environmental needs, but lack the means to provide it in an accessible manner.

The reduction of water scarcity is a goal of many countries and governments.

The UN recognizes the importance of reducing the number of people without sustainable access to clean water and sanitation.

The Millennium Development Goals within the United Nations Millennium Declaration state that by 2015 they resolve to "halve the proportion of people who are unable to reach or to afford safe drinking water."

Monday, November 19, 2018

Dirty Water Causes Millions of People At Risky Attacked Diseases



The United Nations Environment Program (UNEP) says more than 300 million people in Asia, Africa and Latin America are at risk of disease due to increased water pollution in rivers and lakes. According to the UNEP report, between 1990 and 2010 there was an increase in pollution of the river that caused the development of the virus to bacteria. Population growth, agricultural expansion, and the increased amount of waste disposed to the river and are the main factors in increasing water pollution. "Water quality issues on a global scale and the number of people affected by bad water quality are far worse than we think," UNEP author Dietrich Borchardt told Thomson Reuters Foundation. In the report it is also revealed, the Asian region has the largest pollution of the river, which is about 50 percent of the river has been polluted. Meanwhile, river pollution in Latin America is 10 percent and 25 percent in Africa. UNEP data shows that at least 3.5 million people die each year due to cholera, typhoid, polio, and diarrhea due to bacterial infections from dirty water. UNEP estimates that currently there are 164 million people in Africa, 134 million in Asia and 25 million in Latin America who are at risk of illness due to poor water or sanitation. According to UNEP, river pollution is a serious problem that can not be realized to be deadly. UNEP recommends good waste treatment. In addition, clean streams should be completely protected from pollution.

Sunday, November 18, 2018

Penyelidik dari Universiti Lund di Sweden telah mendapati bahawa air

Penyelidik dari Universiti Lund di Sweden telah mendapati bahawa air minuman kita telah disucikan oleh berjuta-juta "bakteria baik" yang terdapat dalam paip air dan tumbuh-tumbuhan penyucian. Setakat ini, pengetahuan tentang mereka telah hampir tidak wujud, namun penyelidikan baru ini akan mengubahnya.

Sebelas air minuman bersih sebenarnya mengandungi sepuluh juta bakteria! Tetapi itu sepatutnya - air paip bersih sentiasa mengandungi bakteria yang tidak berbahaya. Bakteria dan mikrob lain tumbuh di loji rawatan air minuman dan di bahagian dalam paip air kami, yang dapat dilihat dalam bentuk lapisan nipis yang melekat - sebuah biofilm yang dipanggil. Semua permukaan dari pengambilan air mentah ke paip diliputi dalam biofilm ini.

Penemuan oleh penyelidik di Mikrobiologi Gunaan dan Kejuruteraan Sumber Air menunjukkan bahawa kepelbagaian spesies bakteria dalam paip air sangat besar, dan bakteria itu mungkin memainkan peranan yang lebih besar daripada yang difikirkan sebelumnya. Antara lain, penyelidik mengesyaki bahawa sebahagian besar pembersihan air berlaku di dalam paip dan bukan hanya di dalam pokok pembersihan air.

"Satu ekosistem yang belum diketahui sepenuhnya telah mendedahkan kepada kita. Pada masa dahulu, anda tidak dapat melihat apa-apa bakteria sama sekali dan sekarang, terima kasih kepada teknik-teknik seperti penjujukan DNA besar-besaran dan cytometry aliran, kita tiba-tiba melihat lapan puluh ribu bakteria per mililiter dalam air minuman," kata penyelidik Catherine Paul bersemangat.

"Sejak berada di kegelapan dengan lampu suluh, kami kini berada di dalam bilik yang cerah, tetapi ia hanya satu bilik. Berapa banyak bilik yang berbeza di dalam rumah juga merupakan persoalan yang menarik!" dia terus.

Kerja pelajar kedoktoran Katharina Lührig, yang bekerja sama dengan Catherine, profesor Peter Rådström dan Kenneth Persson, dan rakan-rakan Björn Canbäck dan Tomas Johansson telah diterbitkan dalam Mikroba dan Persekitaran.

Hasilnya telah membawa kepada perbincangan yang meriah dalam industri mengenai peranan biofilm dalam air minuman.

Sekurang-kurangnya beberapa ribu jenis spesies hidup di dalam paip air. Menurut penyelidik terdapat hubungan antara komposisi bakteria dan kualiti air.

"Kami mengesyaki terdapat bakteria 'baik' yang membantu membersihkan air dan menjaga ia selamat - sama seperti apa yang berlaku di dalam badan kita. Usus kita penuh dengan bakteria, dan kebanyakan masa ketika kita sihat, mereka membantu kita mencerna makanan kita dan melawan penyakit, kata Catherine Paul.

Walaupun penyelidikan dijalankan di selatan Sweden, bakteria dan biofilem ditemui di seluruh dunia, di paip, paip dan paip air. Pengetahuan ini akan sangat berguna untuk negara apabila mengemas kini dan memperbaiki sistem paip air mereka.

"Harapannya ialah kita dapat mengawal komposisi dan kualiti air dalam bekalan air untuk memacu pertumbuhan bakteria 'baik' yang boleh membantu membersihkan air dengan lebih cekap daripada hari ini," kata Catherine Paul.

Saturday, November 17, 2018

Kehidupan terganggu akibat bekalan air kotor dan busuk

Kehidupan terganggu akibat bekalan air kotor dan busuk

Kehidupan seharian penduduk di Kluang kini terjejas akibat bekalan air yang kotor dan mengeluarkan bau busuk sejak awal bulan ini.

Ahli Dewan Undangan Negeri (Adun) Mengkibol Tan Hong Ping berkata, beliau menyedari masalah itu selepas mendapati air di rumahnya sendiri berwarna keruh dan mengeluarkan bau busuk beberapa hari lalu.
Katanya lagi, walaupun Syarikat Air Johor (SAJ) berjaya menyelesaikan masalah di kawasan rumahnya, masalah yang sama masih berlaku di beberapa kawasan lain.

Beliau yang memaklumkan perkara itu di laman Facebooknya menerima aduan yang serupa oleh ramai pengguna Facebook yang tinggal di sana.

“Malah sehingga semalam, saya masih menerima aduan yang sama. Kebanyakan kawasan yang terjejas adalah yang berdekatan bandar,” katanya 

Menurut komen-komen penduduk di laman Facebooknya, antara kawasan yang mengalami masalah itu adalah Taman Kluang Indah, Taman Bersatu, Taman Emas dan Taman Sri Kluang.

Justeru, katanya lagi, beliau akan berjumpa sendiri dengan SAJ untuk membawa masalah ini agar dapat diselesaikan secepat mungkin.

“Saya telah mengumpulkan maklumat awal berkenaan masalah ini dan akan berjumpa dengan pegawai SAJ Ahad ini bagi membuat laporan dan mendapatkan maklumat lanjut.

“SAJ paling kurang kena pastikan, sama ada ia selamat digunakan atau tidak, apatah lagi air merupakan keperluan asas kita semua,” katanya lagi.

Friday, November 16, 2018

TIPS KESIHATAN : KENAPA ANDA PERLU MINUM AIR





Berapa gelas anda minum air bersih setiap hari? Dua, tiga, empat gelas atau lebih?

Soalan tersebut memang kerap kita dengar terutama ketika berjumpa doktor atau pakar pemakanan.

Pengambilan air bersih dari sumber yang selamat adalah salah satu asas utama kesihatan. Jika anda mahukan tubuh sihat, anda wajib mengikut saranan pakar iaitu minum enam hingga lapan gelas besar air sehari.

Mengapa Tubuh Memerlukan ‘Bekalan’ Air Baru Setiap Hari?
Antara 55% hingga 75% berat badan adalah air. Air bahan kedua terpenting selepas oksigen yang diperlukan oleh tubuh.

Berikut adalah antara sebab kenapa tubuh memerlukan air.

Ia membantu penghadaman, penyerapan dan penyingkiran makanan yang dimakan.Ia membantu perkumuhan bahan buangan dari usus dan buah pinggang.Untuk menyelaraskan suhu badan 24/7Memberi kelancaran pergerakan sendi dan membranDarah merupakan sistem pengangkutan yang berfungsi ‘mengagihkan’ nutrien makanan ke seluruh tubuh. Hampir 92 peratus kandungan darah ialah air.Rembesan tubuh dan cecair penghadaman hampir keseluruhannya adalah air (sistem penghadaman menghasilkan hampir 1.7 liter air liur setiap hari)

Disebabkan fungsi-fungsi yang penting ini, dalam keadaan normal tubuh memerlukan antara satu hingga dua liter air setiap hari supaya ia berfungsi secara optimum.

Jumlah ini juga bergantung kepada saiz, diet, sejauh mana individu tersebut mengamalkan gaya hidup aktif dan keadaan cuaca persekitaran.

Bagaimana Badan Anda Boleh Kehilangan Air Melalui pernafasan, perpeluhan dan penyingkiran (najis dan air kencing) tubuh anda kehilangan 1.7 liter setiap hari. Dalam cuaca panas, perpeluhan meningkat jadi lebih banyak air diperlukan bagi membantu menyelaraskan suhu bandan dan menjadikan anda berasa selesa.Ketika cuaca sejuk, lembapan tambahan hilang melalui pernafasan. Bagi setiap jam aktiviti fizikal atau bersenam, anda memerlukan tambahan 1-3 gelas air. Sistem haba berpusat memberi kesan kekeringan, jadi anda perlu minum lebih banyak air atau kurangkan suhunya. Tahukah Anda?

Air adalah penahan selera secara semula jadi. Kekurangan air boleh membawa kepada makan berlebihan, ini kerana otak tidak dapat membezakan antara lapar dan dahaga, jadi apabila anda fikir anda berasa lapar kemungkinan tubuh sebenarnya memerlukan air.

Jadi minum segelas besar air sebelum anda makan kerana itu yang mungkin diperlukan oleh tubuh bukannya makanan seperti otak anda fikirkan.


Adakah Anda Kekurangan Air?
Antara simptom-simptom menunjukkan tubuh sedang ‘dahagakan’ air.

• Pening : Salah satu fungsi utama air ialah membuang toksin dari tubuh. Otak manusia mengandungi 75 peratus air, jadi walaupun mengalami sedikit penyahhidratan boleh menyebabkan pening.

• Letih/Lemah tumpuan : Jika tubuh mengandungi terlalu banyak toksin dan tidak cukup air untuk mengeluarkannya, anda akan berasa kurang bertenaga kerana tubuh bergelut dengan toksin.

• Sembelit : Air melawaskan proses penyingkiran najis, jadi minumlah air secukupnya untuk melancarkan penyingkirannya.

• Air kencing kotor : Buah pinggang adalah penapis bahan-bahan buangan dari darah. Hampir 180 liter air dikitar semula oleh buah pinggang setiap hari. Proses ini bergantung kepada bekalan air segar yang secukupnya, tanpanya pengeluaran air kencing akan berkurangan menyebabkan bahan buangan menjadi lebih pekat menghasilkan kencing kotor.

• Mulut berbau : Jika cecair tidak cukup di dalam mulut untuk membersihkan sisa-sisa makanan, bakteria akan membiak di dalam tekak dan mulut menyebabkan mulut berbau.

• Mulut kering : Air liur merupakan bahan ‘pelincir’ mulut, penyahhidratan mengurangkan jumlah air liur.

• Kekurangan air yang teruk juga menyebabkan Ketegangan otot : Ini berlaku apabila tidak cukup oksigen sampai ke otot melalui pembuluh darah disebabkan tubuh tidak cukup air.

• Kulit : Kulit yang tidak cukup air akan hilang keanjalan. Ujinya dengan mencubit kulit di belakang tangan ia akan terlepas dengan serta merta.

• Mata : Mata cengkung dan kulit di sekeliling mata lembam menandakan penyahhidratan yang teruk. Amalkan Minum Air Bersih Setiap Hari!

Matlamat anda sekarang ialah untuk minum air secara kerap sepanjang hari. Bagi beberapa hari pertama mungkin anda akan berasa kerap ke tandas, ini kerana tubuh belum biasa dengan keadaan itu dan memerlukan masa untuk penyesuaian. Anda juga akan berasa berat badan berkurangan memandangkan simpanan air dalam tubuh menjadi berlebihan dan secara beransur-ansur anda melepaskannya.



HEALTH TIPS: WHY DO YOU NEED A WATER EVERY DAY?

HEALTH TIPS: WHY DO YOU NEED A WATER EVERY DAY?


How many glasses do you drink daily water? Two, three, four glasses or more?

The question is often heard, especially when you see a doctor or dietician.

Clean water conservation from safe sources is one of the key health benefits. If you want a healthy body, you should follow the advice of a specialist who drink six to eight glasses of water a day.

Why Does the Body Need a New Water Supply Every Day?
Between 55% and 75% body weight is water. Water is second most important after the oxygen required by the body.

Here are the reasons why the body needs water.

It helps digestion, absorption and removal of edible foods. It helps the excretion of waste from the intestines and kidneys. To regulate the body temperature 24 / 7Generating the smooth movement of joints and membranes is a transport system that functions to 'distribute' food nutrients throughout the body. Nearly 92 percent of blood content is water. Body discharge and digestive fluid is almost entirely the water (the digestive system produces almost 1.7 liters of saliva daily)

Due to these important functions, under normal circumstances the body needs between one and two liters of water daily so that it works optimally.

This amount also depends on the size, diet, the extent to which the individual practices active lifestyle and environmental conditions.

How Your Body Can Lose Water Through your breathing, sweating and removal (stool and urine) your body loses 1.7 liters daily. In hot weather, sweat increases so much water is needed to help streamline the temperature of the bandan and make you feel comfortable. When the weather is cold, additional moisture is lost through respiration. For every hour of physical activity or exercise, you need an additional 1-3 glasses of water. Centralized heat system affects drought, so you need to drink more water or reduce its temperature. Do you know?

Water is natural appetite. Water shortage can lead to overeating, this is because the brain can not distinguish between hunger and thirst, so when you think you're hungry for the body's body actually needs water.

So drink a large glass of water before you eat because that is what the body may need instead of food like your brain thinks.





Are You Lack of Water?
Some of the symptoms show the body being 'hungry' of water.

• Dizziness: One of the main functions of water is to remove the toxins from the body. The human brain contains 75 percent water, so even with some dehydration can cause dizziness.

• Tired / Depressive: If the body contains too much toxins and not enough water to remove it, you will feel less energized because the body is struggling with toxins.

• Constipation: Water prevents the removal process of stool, so drink enough water to release its removal.

• Dirty urine: The kidneys are a filter of waste materials from the blood. Nearly 180 liters of water are recycled by kidneys every day. This process relies on adequate fresh water supply, without the production of urine, which reduces the amount of waste produced to produce more dirty urine.

• Mouth smells: If the fluid is not enough in the mouth to clean the food waste, the bacteria will multiply in the throat and the mouth causes the mouth to smell.

• Dry mouth: Saliva is a 'lubricant' mouth, dehydration reduces the amount of saliva.

• Bad water deficiency also causes muscle tension: This happens when not enough oxygen reaches the muscles through blood vessels because the body is not enough water.

• Skin: Inadequate skin will lose its elasticity. The test by pinching the skin in the back of the hand it will slip off immediately.

• Eyes: Curved eyes and skin around the eyes are inferior indicating severe dehydration. Practice Drinking Water Everyday!

Your goal now is to drink water regularly throughout the day. For the first few days you may feel frequent in the toilet, this is because the body is not familiar with the situation and it takes time for adjustment. You will also feel weighs less because the water storage in the body becomes excessive and gradually you release it.

Thursday, November 15, 2018

Water purification

Water purification

Water purification is the removal of contaminants from raw water to produce drinking water that is pure enough for human consumption or for industrial use.
Substances that are removed during the process include parasites (such as Giardia or Cryptosporidium) , bacteria, algae, viruses, fungi, minerals (including toxic metals such as Lead, Copper etc.), and man-made chemical pollutants.
Many contaminants can be dangerous—but depending on the quality standards, others are removed to improve the water's smell, taste, and appearance.
A small amount of disinfectant is usually intentionally left in the water at the end of the treatment process to reduce the risk of re-contamination in the distribution system.
Many environmental and cost considerations affect the location and design of water purification plants.
Groundwater is cheaper to treat, but aquifers usually have limited output and can take thousands of years to recharge.
Surface water sources should be carefully monitored for the presence of unusual types or levels of microbial/disease causing contaminants.
The treatment plant itself must be kept secure from vandalism and terrorism.
It is not possible to tell whether water is safe to drink just by looking at it.
Simple procedures such as boiling or the use of a household charcoal filter are not sufficient for treating water from an unknown source.
Even natural spring water - considered safe for all practical purposes in the 1800s - must now be tested before determining what kind of treatment is needed.
Water scarcity
Water scarcity is the lack of sufficient available water resources to meet the demands of water usage within a region.

It already affects every continent and around 2.8 billion people around the world at least one month out of every year.

More than 1.2 billion people lack access to clean drinking water.

Water scarcity involves water stress, water shortage or deficits, and water crisis.

While the concept of water stress is relatively new, it is the difficulty of obtaining sources of fresh water for use during a period of time and may result in further depletion and deterioration of available water resources.Water shortages may be caused by climate change, such as altered weather patterns including droughts or floods, increased pollution, and increased human demand and overuse of water.

A water crisis is a situation where the available potable, unpolluted water within a region is less than that region's demand.

Water scarcity is being driven by two converging phenomena: growing freshwater use and depletion of usable freshwater resources.

Water scarcity can be a result of two mechanisms: physical (absolute) water scarcity and economic water scarcity, where physical water scarcity is a result of inadequate natural water resources to supply a region's demand, and economic water scarcity is a result of poor management of the sufficient available water resources.

According to the United Nations Development Programme, the latter is found more often to be the cause of countries or regions experiencing water scarcity, as most countries or regions have enough water to meet household, industrial, agricultural, and environmental needs, but lack the means to provide it in an accessible manner.

The reduction of water scarcity is a goal of many countries and governments.

The UN recognizes the importance of reducing the number of people without sustainable access to clean water and sanitation.

The Millennium Development Goals within the United Nations Millennium Declaration state that by 2015 they resolve to "halve the proportion of people who are unable to reach or to afford safe drinking water."

Wednesday, November 14, 2018

KUALA LUMPUR - Pantang ada masalah air kotor berlaku, rata-rata kebanyakan 7.5 juta pengguna air di Kuala Lumpur, Putrajaya danSelangor biasanya 'menuding jari' kepada Syarikat Bekalan Air Selangor Sdn. Bhd. (Syabas).
Kadangkala tuduhan itu bukan semuanya salah Syabas malah ia juga berpunca daripada sikap pengguna sendiri mengakibatkan air yang disalurkan kotor, keruh dan berkeladak.
Pengurus Besar Bahagian Komunikasi dan Hal Ehwal Awam Syabas, Abdul Halem Mat Som berkata, masalah air kotor itu kebanyakannya berpunca daripada sistem paip dalaman di rumah pengguna yang tidak diservis dengan baik.
Hal itu terbukti melalui beberapa siri pemeriksaan tangki air rumah yang dilakukan Syabas sejak beberapa tahun lalu. Penemuan terbaru dibuat di sebuah rumah di Kampung Baru di sini semalam.
Sungguh menjijikkan apabila melihat tangki air yang diperiksa. Ia disaluti karat tebal, berlendir dan mengeluarkan bau busuk hingga kelihatan seperti sebuah tangki najis.
"Kebanyakan pengguna Syabas tidak menyedari bahawa masalah bekalan air paip kotor di rumah mereka kebanyakannya berpunca daripada sistem paip di dalam rumah," katanya ketika ditemui selepas program Turun Padang Syabas di sini semalam.
Menurut Abdul Halem, pemeriksaan Syabas mendapati kira-kira 80 peratus daripada 1,076 aduan bekalan air kotor yang diterima pihaknya sejak 6 April lalu berpunca daripada sistem paip atau tangki air di dalam rumah yang telah usang dan berkarat.

Tuesday, November 13, 2018

Type of Disease Caused By Water Pollution


Water is the source of the lives of all living beings. When the water is polluted it will have a huge impact on the environment and living beings. Water plays an important role in maintaining the stability of the ecosystem. However, it is not uncommon for their environment to ignore that it causes ecosystem damage that has a bad impact on human life. Water pollution occurs by irresponsible parties who waste sewage or waste to the river. As a result, water becomes polluted and causes various diseases. There are 3 types of diseases caused by water pollution, below we will explain in detail.

Type of Disease Caused By Water Pollution

jenis penyakit yang disebabkan oleh pencemaran air
  • Diare
This disease is caused by water pollution. Severe diarrhea can cause dehydration (loss of fluid) even death. Diarrhea can strike anyone, from children to elderly. To prevent diarrheal disease, it is advisable to drink before you drank water first to drink to kill bacterial bacteria in water.
Severe diarrhea is characterized by blood discharge, fever, vomiting and dysentery. Similar symptoms are also found in people suffering from cholera caused by bacteria vibrio chlorae or people infected with Amoebiasis.
Quoting from Newhealthadvisor, Friday December 25, 2015 reveals that hepatitis A disease is caused by vius and invades your heart. Not only is it transmitted through contaminated water, hepatitis A disease can also be transmitted through direct contact with the patient.
Symptoms that cause it are diarrhea, stomachache, nausea, fatigue and depression. In addition to hepatitis, there are also diseases caused by viruses in polluted water ie polyomavirus and polio, where polyomavirus is a type of tumor that attacks humans and animals. While, polio is a virus that attacks the bloodstream and the nervous system.

Tin poisoning
  • Tin poisoning
Tin kerosene can be caused by an old water pipe. Children exposed to lead poisoning will not only experience anemia and hypertension but also disorders of renal organs and reproductive organs. The rash, tin that enters the body can disturb the nervous system. Therefore, make sure you always change the water pipes regularly in a certain time.

Monday, November 12, 2018

According to the World Health Organization almost 1 billion people do not have access to clean drinking water, and that number is expected to increase with climate change. Meanwhile, our endlessly rising energy needs and use of heavy metals in industrial processes have maximized our exposure to toxic materials in water.

Current commercial methods to remove heavy metals including lead from municipal drinking water tend to be costly and energy-consuming, without being sufficiently efficient. Less conventional approaches might be more efficient, but are single-use, difficult to regenerate, or produce significant toxic waste as a side-product.

Now, the lab of Professor Wendy Lee Queen at EPFL, with colleagues at the University of California Berkeley and Lawrence Berkeley National Laboratory have found a solution using metal organic frameworks (MOFs), which are materials made up of metal nodes interlinked by organic chemical 'struts'. Their unprecedented internal surface areas and easy chemical tunability allow MOFs to "pull" water vapor and other gases from air. These same features make them promising materials also for selectively removing heavy metals from water.

A PhD student at EPFL-Valais, Daniel T. Sun, has designed a water-stable MOF/polymer composite using cheap, environmentally and biologically friendly materials. The scientists treated a MOF, known as Fe-BTC, with dopamine, which polymerized to polydopamine (PDA) pinning the polymer inside the MOF. The final composite, named Fe-BTC/PDA, can quickly and selectively remove high amounts of heavy metals like lead and mercury from real-world water samples. In fact, it can remove over 1.6 times its own weight of mercury and 0.4 times of its weight of lead.

Fe-BTC/PDA was then tested in solutions as toxic as some of the worst water samples found in Flint, Michigan. The tests showed that the MOF can, in a matter of seconds, reduce lead concentrations to 2 parts per billion, a level that the U.S. Environmental Protection Agency and World Health Organization deem drinkable.

The scientists also removed lead from various real-world water samples obtained from the Rhone River, the Mediterranean Sea, and a wastewater treatment plant in Switzerland. They also showed how the material could be regenerated easily.

There are multiple sources of exposure to toxic heavy metals. For example, lead is used in paint, ceramic glazes, jewelry, toys, and pipes. Considering this, the approach with the new MOF shows much promise for solving current limitations of water-cleaning systems. The authors of the study are now testing other new specially designed MOFs to remove other types of trace contaminants in water and air.

Saturday, November 10, 2018

Pencemaran Air Harus Dihentikan 

merupakan sebuah negara yang mempunyai pemandangan yang indah.Hutan belantara yang hijau;laut-laut yang berwarna biru dan kelihatan nian jernih.Malang sekali,satu daripada “wajah”pemandangan yang indah ini,iaitu sungai menjadi hodoh akibat perbuatan segelintir anggota masyarakat yang tidak bertanggungjawab.   Dalam negara kita,sudah mempunyai beberapa batang sungai tercemar.Keadaan ini semakin serius.Terdapat banyak penduduk yang tinggal di tebing sungai membuang sampah ke dalam sungai setiap hari.Lama-kelamaan,air sungai kita pun menjadi keruh,tidak jernih lagi. Oleh itu,pihak berkuasa mesti mengambil beberapa langkah untuk mengatasi masalah ini.Sebelum semua sungai di seluruh negara dimusnahkan ,papan-papan tanda peringatan yang tercacat slogan “Sayangilah Sungai Kita”banyak dipasang di tebing sungai.Tindakan kerajaan itu tidak akan berjaya tanpa kerjasama daripada semua anggota masyarakat.Ingat,manusia masih bergantung kepada air sungai sebagai sumber minuman sehariannya.Jadi,mulailah hari  ini,slogan”Sayangilah Sungai Kita”harus dipupuk kepada setiap orang sebelum nasi menjadi bubur.

Friday, November 9, 2018

The average person engaged in average activity in a temperate climate can live for three days without water. No exceptions. It’s also a fact that the average person requires at least a half-gallon of water a day to maintain functional health. This can vary depending on age, weight and activity but stands as a viable average. Any less begins to compromise certain biological systems

Thursday, November 8, 2018

Dirty river water like tea

Mahang River water flowing into Kampung Ulu Mahang and other villages should look crystal clear.

But a few days ago he changed color.

One of the most famous locations with the world's longest pedestrian route with a 1.5 kilometer Sadim River Recreation Area is now the water looks like 'teh tarik'.

The water pollution also affected Tenaga Nasional Bhd's hydro-electric process along the river.

It is said to be due to uncontrolled sand mining and logging activities.

A businessman, Mohd Khairy Mohd Salleh, 46, said the villagers used the river water for daily use such as washing and planting.

"Now, the color of water like tea pull - even if the weather is good. Previously, the water was muddy on rainy days only," he explained.

In addition, the river is an alternative water supply to some 2,000 residents in Kampung Bukit Kabu, Kampung Kubur Kubur, Kampung Padang Kering and Kampung Charok Kedah as well as 3,000 residents in Kampung Ulu Mahan.

He hoped the authorities could control and restrict logging activities and land mining.

The Star is looking at the 10-kilometer route and seeing uphill eruptions run about 500 meters above sea level.

They also found timber storage before being taken out of Kampung Ulu Mahang.

The logging activity is licensed from Kedah's Perbadanan Menteri for only 200 hectares in the Mount Inas area.

A Energy worker said power generators had declined since the activity. Previously, 400kWh, now only 100Kwh due to lack of clean water.

Wednesday, November 7, 2018

Water, always important, always controversial, always fascinating, remains surprising. For a substance that is ubiquitous on Earth, three quarters of our planet is covered with it, researchers can still be surprised by some of its properties, according to Arizona State University chemist C. Austen Angell.

Angell, a Regents Professor in ASU's School of Molecular Sciences, has spent a good portion of his distinguished career tracking down some of water's more curious physical properties. In a new piece of research just published in Science (March 9), Angell and colleagues from the University of Amsterdam have, for the first time, observed one of the more intriguing properties predicted by water theoreticians -- that, on sufficient super-cooling and under specific conditions it will suddenly change from one liquid to a different one. The new liquid is still water but now it is of lower density and with a different arrangement of the hydrogen bonded molecules with stronger bonding that makes it a more viscous liquid.

"It has nothing to do with 'poly-water,'" Angell adds recalling a scientific fiasco of many decades ago. The new phenomenon is a liquid-liquid phase transition, and until now it had only been seen in computer simulations of water models.

The problem with observing this phenomenon directly in real water is that, shortly before the theory says it should happen, the real water suddenly crystallizes to ice. This has been called the "crystallization curtain" and it held up progress in understanding water physics and water in biology for decades.

"The domain between this crystallization temperature and the much lower temperature at which glassy water (formed by deposition of water molecules from the vapor) crystallizes during heating has been known as a 'no-man's land,'" Angell said. "We found a way to pull aside the 'crystallization curtain' just enough to see what happens behind -- or more correctly, below -- it," Angell said.

Phase transitions of water are important to understand for a multitude of applications. For example, the well-known and destructive heaving of concrete roads and footpaths in winter is due to the phase transition from water to ice under the concrete. The phase transition between liquid states, described in the current work, has much in common with the transition to ice but it occurs at a much lower temperature, about -90 C (-130 F), and only under super-cooled conditions so it is likely to remain mostly a scientific curiosity for the foreseeable future.

Angell explained that a couple of years ago he and his research associate Zuofeng Zhao, were studying the thermal behavior of a special type of "ideal" aqueous solution they had been using to explore the folding and unfolding of globular proteins. They wanted to observe these solutions' ability to supercool and then vitrify. Seeking the limit to the glassy domain, they added extra water to enhance the probability of ice crystallization and found that instead of finally evolving heat as ice crystallized (leaving a residual unfrozen solution) as is normally found when cooling saline solutions, it actually gave off heat to form a new liquid phase.

The new liquid was much more viscous, maybe even glassy. Furthermore, by reversing the direction of the temperature change, Angell and Zhao found that they could transform the new phase back into the original solution before any ice would start to crystallize.

"This observation, published in Angewandte Chemie, raised considerable interest but there was no structural information to explain what was happening," Angell said. That changed when Angell visited the University of Amsterdam two summers ago, and met Sander Woutersen, a specialist in infrared spectroscopy who became very interested in the structural aspects of the phenomenon.

In the Science paper, the team with Woutersen, his student Michiel Hilbers and his computational colleague Bernd Ensing has now shown that the structures involved in the liquid-liquid transition have the same spectroscopic signatures -- and the same hydrogen bonding patterns -- as are seen in the two known glassy forms of ice produced by laborious alternative processes (high- and low-density amorphous solid phases of water).

"The liquid-liquid transition we had found was now seen to be the 'living analog' of the change between two glassy states of pure water that had been reported in 1994, using pure pressure as the driving force," Angell explained.

The results would seem to "provide direct evidence for the existence of a liquid-liquid transition behind the 'crystallization curtain' in pure water," Woutersen said, adding that the findings offer a general explanation for the thermodynamic anomalies of liquid water, and a validation for the "second critical point theory" put forward by Gene Stanley's group to explain those anomalies.

"This behavior is almost unique among the myriad of known molecular liquids," Angell added. "Only a few other substances